Abstract

The brain consists not only of neurons but also of non-neuronal cells, including astrocytes. Recent discoveries in neuroscience suggest that astrocytes directly regulate neuronal activity by releasing gliotransmitters such as glutamate. In this paper, we consider a biologically plausible mathematical model of a tripartite neuron-astrocyte network. We study the stability of the nonlinear astrocyte dynamics, as well as its role in regulating the firing rate of the postsynaptic neuron. We show that astrocytes enable storing neuronal information temporarily. Motivated by recent findings on the role of astrocytes in explaining mechanisms of working memory, we numerically verify the utility of our analysis in showing the possibility of two competing theories of persistent and sparse neuronal activity of working memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call