Abstract

Astrocytes are highly dynamic cells that modulate synaptic transmission within a temporal domain of seconds to minutes in physiological contexts such as Long-Term Potentiation (LTP) and Heterosynaptic Depression (HSD). Recent studies have revealed that astrocytes also modulate a faster form of synaptic activity (milliseconds to seconds) known as Transient Heterosynaptic Depression (tHSD). However, the mechanism underlying astrocytic modulation of tHSD is not fully understood. Are the traditional gliotransmitters ATP or glutamate released via hemichannels/vesicles or are other, yet, unexplored pathways involved? Using various approaches to manipulate astrocytes, including the Krebs cycle inhibitor fluoroacetate, connexin 43/30 double knockout mice (hemichannels), and inositol triphosphate type-2 receptor knockout mice, we confirmed early reports demonstrating that astrocytes are critical for tHSD. We also confirmed the importance of group II metabotropic glutamate receptors (mGluRs) in astrocytic modulation of tHSD using a group II agonist. Using dominant negative SNARE mice, which have disrupted glial vesicle function, we also found that vesicular release of gliotransmitters and activation of adenosine A1 receptors are not required for tHSD. As astrocytes can release lipids upon receptor stimulation, we asked if astrocyte-derived endocannabinoids are involved in tHSD. Interestingly, a cannabinoid receptor 1 (CB1R) antagonist blocked and an inhibitor of the endogenous endocannabinoid 2-arachidonyl glycerol (2-AG) degradation potentiates tHSD in hippocampal slices. Taken together, this study provides the first evidence for group II mGluR-mediated astrocytic endocannabinoids in transiently suppressing presynaptic neurotransmitter release associated with the phenomenon of tHSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.