Abstract

In the neurological disease associated with HTLV-1 infected T lymphocytes infiltrated within the CNS are suspected of playing a prominent role in pathogenesis via inflammatory cytokines and the viral protein Tax-1. We hypothesized that T lymphocytes initiate functional perturbation in astrocytes, resulting in neuronal alteration as glial cells have a crucial role in CNS homeostasis. In particular, astrocytes manage the steady state level of glutamate and continuously provide metabolite precursors to neurons and oligodendrocytes. Using a model system of HTLV-1-infected T cells-astrocytes interaction, we show that after contact with T cells, astrocyte acquire a phenotype typical of gliosis: secretion of proinflammatory cytokines (TNF-alpha, IL-1alpha, IL-6) and matrix metalloproteinases (MMP-9, MMP-3). The concomitant increase in the expression of MMPs and of their endogenous inhibitors (TIMP-1 and TIMP-3) suggests a perturbation in MMP/TIMP balance. This may alter the extracellular matrix and, in turn, the cell environment. At a functional level, glutamate transport and catabolism are impaired in astrocytes. A decrease in glutamate uptake is associated with downregulated expression of glutamate transporters GLAST and GLT1. The expression of astrocytic enzyme of glutamate metabolism is modified with up-regulation of glutamine synthetase and down-regulation of glutamate dehydrogenase. The involvement of Tax-1 in these alterations, directly or indirectly via TNF-alpha, is shown. Altered glutamate uptake and catabolism associated with impairment in cell connectivity via MMP/TIMP imbalance could compromise the functional integrity of the CNS in general and that of neurons and oligodendrocytes in particular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.