Abstract

Lysophosphatidic acid (LPA) plays important roles in many biological processes, such as brain development, oncogenesis and immune functions, via its specific receptors. We previously demonstrated that LPA-primed astrocytes induce neuronal commitment of cerebral cortical progenitors (Spohr et al. 2008). In the present study, we analyzed neurite outgrowth induced by LPA-treated astrocytes and the molecular mechanism underlying this event. LPA-primed astrocytes increase neuronal differentiation, arborization and neurite outgrowth of developing cortical neurons. Treatment of astrocytes with epidermal growth factor (EGF) ligands yielded similar results, suggesting that members of the EGF family might mediate LPA-induced neuritogenesis. Furthermore, treatment of astrocytes with LPA or EGF ligands led to an increase in the levels of the extracellular matrix molecule, laminin (LN), thus enhancing astrocyte permissiveness to neurite outgrowth. This event was reversed by pharmacological inhibitors of the MAPK signaling pathway and of the EGF receptor. Our data reveal an important role of astrocytes and EGF receptor ligands pathway as mediators of bioactive lipids action in brain development, and implicate the LN and MAPK pathway in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.