Abstract

BackgroundDevelopment of synaptic activity is a key neuronal characteristic that relies largely on interactions between neurons and astrocytes. Although astrocytes have known roles in regulating synaptic function and malfunction, the use of human- or donor-specific astrocytes in disease models is still rare. Rodent astrocytes are routinely used to enhance neuronal activity in cell cultures, but less is known about how human astrocytes influence neuronal activity. MethodsWe established human induced pluripotent stem cell–derived neuron-astrocyte cocultures and studied their functional development on microelectrode array. We used cell lines from 5 neurotypical control individuals and 3 pairs of monozygotic twins discordant for schizophrenia. A method combining Ngn2 overexpression and dual SMAD inhibition was used for neuronal differentiation. The neurons were cocultured with human induced pluripotent stem cell–derived astrocytes differentiated from 6-month-old astrospheres or rat astrocytes. ResultsWe found that the human induced pluripotent stem cell–derived cocultures developed complex network bursting activity similar to neuronal cocultures with rat astrocytes. However, the effect of NMDA receptors on neuronal network burst frequency (NBF) differed between cocultures containing human or rat astrocytes. By using cocultures derived from patients with schizophrenia and unaffected individuals, we found lowered NBF in the affected cells. We continued to demonstrate how astrocytes from an unaffected individual rescue the lowered NBF in the affected neurons by increasing NMDA receptor activity. ConclusionsOur results indicate that astrocytes participate in the regulation of neuronal NBF through a mechanism that involves NMDA receptors. These findings shed light on the importance of using human and donor-specific astrocytes in disease modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call