Abstract

Overexpression of Cu,Zn SOD (SOD1) can increase survival of neurons under some pathological conditions. Prior studies have shown, however, that SOD1 overexpression can reduce neuronal survival during exposure to superoxide generators by a mechanism involving excess H(2)O(2) accumulation. Since astrocytes exhibit greater H(2)O(2) catabolism capacity than do neurons, the present study examined the effects of SOD1 overexpression on astrocyte survival under these conditions. Cultures were prepared from transgenic mice that overexpress human SOD1 and from nontransgenic littermate controls. Exposure to xanthine oxidase/hypoxanthine (XO/HPX) or menadione caused dose-dependent astrocyte death. In contrast to prior observations with neurons, astrocytes that overexpress SOD1 showed increased resistance to superoxide toxicity. Surprisingly, increased survival in SOD1 overexpressing cultures remained evident even when H(2)O(2) catabolism was inhibited by preincubation with aminotriazole (to block catalase) and buthionine sulfoximine (to deplete glutathione). These findings suggest differences in superoxide metabolism between neurons and astrocytes, and that the greater resistance of astrocytes to oxidative stress is due at least partly to factors other than greater glutathione peroxidase and catalase activity in astrocytes. GLIA 33:343-347, 2001. Published 2001 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.