Abstract

The roles that astrocytes play in the evolution of abnormal network excitability in chronic neurological disorders involving brain injury, such as acquired epilepsy, are receiving renewed attention due to improved understanding of the molecular events underpinning the physiological functions of astrocytes. In epileptic tissue, evidence is pointing to enhanced chemical signaling and disrupted linkage between water and potassium balance by reactive astrocytes, which together conspire to enhance local synchrony in hippocampal microcircuits. Reactive astrocytes in epileptic tissue both promote and oppose seizure development through a variety of specific mechanisms; the new findings suggest several novel astrocyte-related targets for drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call