Abstract

IntroductionAstrocytes are involved in Parkinson's disease (PD) where they could contribute to α‐Synuclein pathology but also to neuroprotection via α‐Synuclein clearance. The molecular signature underlying their dual role is still elusive. Given that vitamin D has been recently suggested to be protective in neurodegeneration, the aim of our study was to investigate astrocyte and neuron vitamin D pathway alterations and their correlation with α‐Synuclein aggregates (ie, oligomers and fibrils) in human brain obtained from PD patients.MethodsThe expression of vitamin D pathway components CYP27B1, CYP24A1, and VDR was examined in brains obtained from PD patients (Braak stage 6; n = 9) and control subjects (n = 4). We also exploited proximity ligation assay to identified toxic α‐Synuclein oligomers in human astrocytes.ResultsWe found that vitamin D‐activating enzyme CYP27B1 identified a subpopulation of astrocytes exclusively in PD patients. CYP27B1 positive astrocytes could display neuroprotective features as they sequester α‐Synuclein oligomers and are associated with Lewy body negative neurons.ConclusionThe presence of CYP27B1 astrocytes distinguishes PD patients and suggests their contribution to protect neurons and to ameliorate neuropathological traits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.