Abstract

Short interfering RNA (siRNA) inhibits the synthesis of specific proteins through RNA interference (RNAi). However, siRNA can induce innate immune responses that are mediated by toll-like receptors (TLRs) in cells of the immune system. Here, we sought to evaluate whether siRNA can induce such responses in glial cells. We examined the effects of various siRNA sequences prepared with lipids (oligofectamine). Lipid-siRNA induced variable degrees of silencing-independent nonspecific effects, e.g. increased Stat1 and Cox-2 expression and release of IL-6 and IP-10 in primary astroglia. This was prevented through chemical modification of siRNA by nucleoside 2'-O-methylation, without impairing specific gene silencing. Lipid-siRNA also induced nonspecific responses in purified astroglia, but not in microglia, or 3T3 cells. The highest TLR7 and TLR3 mRNA expression was found in microglia and purified astroglia, respectively. Accordingly, the TLR3 agonist poly(I:C) (PIC) induced higher release of IFN-beta in primary and purified astroglia than in microglia. As siRNA, PIC induced IP-10, Stat1, VCAM-1, and Cox-2 and increased TLR3 mRNA expression. The effects of lipid-siRNA in purified astrocytes were attenuated after silencing TLR3 or TLR7 expression, and by the PKR inhibitor 2-aminopurine. Furthermore, lipid-siRNA induced the expression of RIG-I. In contrast, siRNA devoid of lipids did not enter the astrocytes, did not silence gene expression, and did not induce Stat1 or Cox-2. The results show that, in astroglia, lipid-siRNA induces innate immune responses that are mediated, at least in part, by intracellular mechanism dependent on TLR7, TLR3, and helicases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.