Abstract

An amyloid-associated serine proteinase inhibitor (serpin), alpha(1)-antichymotrypsin (ACT), is encoded by a gene located within the distal serpin subcluster on human chromosome 14q32.1. The expression of these distal serpin genes is determined by tissue-specific chromatin structures that allow their ubiquitous expression in hepatocytes; however, their expression is limited to a single ACT gene in astrocytes. In astrocytes and glioma cells, six specific DNase I-hypersensitive sites (DHSs) were found located exclusively in the 5'-flanking region of the ACT gene. We identified two enhancers that mapped to the two DHSs at -13 kb and -11.5 kb which contain activator protein-1 (AP-1) binding sites, both of which are critical for basal astrocyte-specific expression of ACT reporters. In vivo, these elements are occupied by c-jun homodimers in unstimulated cells and c-jun/c-fos heterodimers in interleukin-1-treated cells. Moreover, functional c-jun is required for the expression of ACT in glioma cells because both transient and stable inducible overexpression of dominant-negative c-jun(TAM67) specifically abrogates basal and reduces cytokine-induced expression of ACT. Expression-associated methylation of lysine 4 of histone H3 was also lost in these cells, but the DHS distribution pattern and global histone acetylation were not changed upstream of the ACT locus. Interestingly, functional AP-1 is also indispensable for the expression of glial fibrillary acidic protein (GFAP), which is an astrocyte-specific marker. We propose that AP-1 is a key transcription factor that, in part, controls astrocyte-specific expression of genes including the ACT and GFAP genes.

Highlights

  • Contrast, only the ACT gene is expressed in brain astrocytes and glioma cells [3]

  • Activator Protein-1 (AP-1) Binds to DNase I-hypersensitive Sites DHS1 and DHS2—We have shown previously that the astrocyte-specific expression of the ACT gene is associated with the tissue-specific chromatin structures at the distal serpin subcluster [3]

  • To identify the astrocyte-specific factors required for the ACT expression, we analyzed the binding of proteins to the DNA fragments covering these six DNase I-hypersensitive sites (DHSs) by Electron Mobility Shift Assays (EMSA)

Read more

Summary

Introduction

Contrast, only the ACT gene is expressed in brain astrocytes and glioma cells [3]. Selective expression of ACT in these cells correlates with DNase I accessibility at the 5Ј-flanking region of the gene, whereas nonexpressed protein C inhibitor and kallistatin genes are localized in DNase I-inaccessible chromatin [3]. We have reported previously the presence of six DNase I-hypersensitive sites (DHSs) in the 5Ј-flanking region of the ACT gene in astrocytes and glioma cells [3].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call