Abstract
The central nervous system (CNS) has a limited auto-regeneration capacity, which makes it challenging for the development of new therapies. Previous studies from our lab have demonstrated the applicability of human bone marrow mesenchymal stem cells (hBM-MSCs) secretome as a possible therapeutic tool for CNS. Astrocytes, glial cells present in all brain regions, are important players in brain function through their vast influence in extracellular homeostasis, neuro-vascular regulation, synaptic modulation and neurogenesis. Thus, in the present work, we aimed to evaluate the specific impact of MSCs secretome on hippocampal proliferation and astrocyte morphology, in both WT and dnSNARE mice, a transgenic model that presents impaired astrocytic exocytosis and consequently impaired astrocytic function. Results demonstrated increased levels of proliferation for WT when treated with secretome. Additionally, it was possible to observe that dnSNARE animals injected with hBM-MSCs secretome disclosed increased levels of proliferating GFAP stained cells at the SGZ. Morphometrical evaluation found increased process hypertrophy and branching of dnSNARE astrocytes when treated with secretome. These results are closely related with the trophic factors present in the secretome, namely FGF-2, BDNF, GDNF, IGF-1, VEGF, CADH2, PEDF and miR-16. Moreover, the impaired exocytosis of astrocytes may also have implications for the response to the proliferative stimulus, given the established autocrine signaling through this mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.