Abstract

Astrocytes are the predominant cell type in the brain and perform key functions vital to CNS physiology, including blood brain barrier formation and maintenance, synaptogenesis, neurotransmission, and metabolic regulation. To fully understand the contributions of astrocytes to brain function, it will be important to bridge the existing gap between development and physiology. In this review, we provide an overview of Astrocyte development, including recent insights into molecular mechanisms of astrocyte specification, regional patterning and proliferation. This developmental perspective is complemented with recent findings that describe the functional maturation of astrocytes and their prospective diversity. Future progress in understanding Astrocyte development will depend on the development of astrocyte- stage specific markers and tools for manipulating astrocytes without affecting neuron production. Ultimately, a mechanistic approach to Astrocyte development will be crucial to developing new treatments for the many neurodevelopmental, neurodegenerative, neuroimmune, and neoplastic diseases involving astrocyte dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.