Abstract

Astrochemistry and astrobiology, the fascinating disciplines that strive to unravel the origin of life, have opened unprecedented and unpredicted vistas into exotic compounds as well as extreme or complex reaction conditions of potential relevance for a broad variety of applications. Representative, and so far little explored sources of inspiration include complex organic systems, such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives; hydrogen cyanide (HCN) and formamide (HCONH2) oligomers and polymers, like aminomalononitrile (AMN)-derived species; and exotic processes, such as solid-state photoreactions on mineral surfaces, phosphorylation by minerals, cold ice irradiation and proton bombardment, and thermal transformations in fumaroles. In addition, meteorites and minerals like forsterite, which dominate dust chemistry in the interstellar medium, may open new avenues for the discovery of innovative catalytic processes and unconventional methodologies. The aim of this review was to offer concise and inspiring, rather than comprehensive, examples of astrochemistry-related materials and systems that may be of relevance in areas such as surface functionalization, nanostructures, and hybrid material design, and for innovative technological solutions. The potential of computational methods to predict new properties from spectroscopic data and to assess plausible reaction pathways on both kinetic and thermodynamic grounds has also been highlighted.

Highlights

  • Until not too long ago, the terms astrochemistry and astrobiology conveyed a general impression of niche research fields at the boundaries of science, relying heavily on theoretical analysis and speculation rather than solid experimental evidence

  • Astrochemistry and astrobiology are no longer the realm of “forbidden” or “exotic” chemistry and biology, but they are increasingly being appreciated as an unexplored source of inspiration for new chemical processes, new reaction conditions, and even new concepts and theories for the study of extreme living systems

  • Organic compounds permeate virtually all astrophysical environments as they take part in a complex cycle commencing with the outflow of matter from dying stars, through the diffuse interstellar medium and dense molecular clouds where stars and planetary systems form

Read more

Summary

Introduction

Until not too long ago, the terms astrochemistry and astrobiology conveyed a general impression of niche research fields at the boundaries of science, relying heavily on theoretical analysis and speculation rather than solid experimental evidence. This negative attitude and the underlying skepticism or prejudice toward the chemistry of astrophysical environments was due in part to the limited credit given to theories based on spectroscopic analysis of emissions from remote regions of space, and in part to the widely held belief that space is not a place where useful and interesting chemical processes may occur in a substantial, verifiable, and repeatable manner. The aim of this paper was to pick up a few representative examples of chemical processes of astrochemical and prebiotic relevance, and to discuss them as a source of inspiration for new materials or molecular systems, or for little explored chemical reactions and methodologies deserving of further research in materials science and technology

Complex Organic Molecules
Biochemistry of Extremophilic Microorganisms
Solid-State Reactions on Minerals and Meteorite Surface
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.