Abstract
The fight against the COVID-19 pandemic has highlighted the importance and benefits of recommending paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding crowded indoor or outdoor areas. Existing path discovery techniques are inadequate for coping with such dynamic and heterogeneous (indoor and outdoor) environments—they typically find an optimal path assuming a homogeneous and/or static graph, and hence they cannot be used to support contact avoidance. In this article, we pose the need for Mobile Contact Avoidance Navigation and propose ASTRO ( A ccessible S patio- T emporal R oute O ptimization), a novel graph-based path discovering algorithm that can reduce the risk of COVID-19 exposure by taking into consideration the congestion in indoor spaces. ASTRO operates in an A * manner to find the most promising path for safe movement within and across multiple buildings without constructing the full graph. For its path finding, ASTRO requires predicting congestion in corridors and hallways. Consequently, we propose a new grid-based partitioning scheme combined with a hash-based two-level structure to store congestion models, called CM-Structure , which enables on-the-fly forecasting of congestion in corridors and hallways. We demonstrate the effectiveness of ASTRO and the accuracy of CM-Structure ’s congestion models empirically with realistic datasets, showing up to one order of magnitude reduction in COVID-19 exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Spatial Algorithms and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.