Abstract

ABSTRACT Quantifying electron trapping and transfer to small molecules is crucial for interfacial chemistry. In an astrochemical context, we study how NH3 clusters in both crystalline and amorphous forms can capture low-energy electrons to form ammoniated electrons. Electron affinities, vertical detachment energies, and vertical attachment energies were computed via ab initio static and dynamics simulations, (DFT, DLPNO-CCSD(T);AIMD), for (NH3)n clusters (n = 4, 5, 6, 8, 14, 23, and 38). Our results indicate that the clusters could trap and stabilize the unpaired electron which is always externally localized on the clusters. Interactions of the ammoniated electron clusters with astrochemically relevant molecules indicate that electron transfer to water and methanol are feasible, forming the radical anions (H2O)−· and (CH3OH)−·. The trapping of electrons by both crystalline and amorphous NH3 ices, and subsequent transfer to small molecules, highlights ‘astro-electrochemical’ reactions, and has implications for both astrochemistry as well as terrestrial cluster science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.