Abstract

Cortical force generators play a central role in the orientation and positioning of the mitotic spindle. In higher eukaryotes, asymmetrically localized cortical polarity determinants recruit or activate such force generators, which, through interactions with astral microtubules, position the mitotic spindle at the future site of cytokinesis. Recent studies in budding yeast have shown that, rather than the cell cortex, the astral microtubules themselves may provide polarity cues that are needed for asymmetric pulling on the mitotic spindle. Such asymmetry has been shown to be required for proper spindle positioning, and consequently faithful and accurate chromosome segregation. In this review, we highlight results that have shed light on spindle orientation in this classical model of asymmetric cell division, and review findings that may shed light on similar processes in higher eukaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.