Abstract

BackgroundGlucose-regulated proteins (GRP) are induced in the cancer microenvironment to promote tumor survival, metastasis and drug resistance. AST was obtained from the medicinal plant Astragalus membranaceus, which possesses anti-tumor and pro-apoptotic properties in colon cancer cells and tumor xenograft. The present study aimed to investigate the involvement of GRP in endoplasmic reticulum (ER) stress-mediated apoptosis during colon cancer development, with focus on the correlation between AST-evoked regulation of GRP and calpain activation.MethodsThe effects of AST on GRP and apoptotic activity were assessed in HCT 116 human colon adenocarcinoma cells. Calpain activity was examined by using a fluorescence assay kit. Immunofluorescence staining and immunoprecipitation were employed to determine the localization and association between calpains and GRP. GRP78 gene silencing was performed to confirm the importance of GRP in anticancer drug activities. The modulation of GRP and calpains was also studied in nude mice xenograft.ResultsER stress-mediated apoptosis was induced by AST, as shown by elevation in both spliced XBP-1 and CHOP levels, with parallel up-regulation of GRP. The expression of XBP-1 and CHOP continued to increase after the peak level of GRP was attained at 24 h. Nevertheless, the initial increase in calpain activity as well as calpain I and II protein level was gradually declined at later stage of drug treatment. Besides, the induction of GRP was partly reversed by calpain inhibitors, with concurrent promotion of AST-mediated apoptosis. The knockdown of GRP78 by gene silencing resulted in higher sensitivity of colon cancer cells to AST-induced apoptosis and reduction of colony formation. The association between calpains and GRP78 had been confirmed by immunofluorescence staining and immunoprecipitation. Modulation of GRP and calpains by AST was similarly demonstrated in nude mice xenograft, leading to significant inhibition of tumor growth.ConclusionsOur findings exemplify that calpains, in particular calpain II, play a permissive role in the modulation of GRP78 and consequent regulation of ER stress-induced apoptosis. Combination of calpain inhibitors and AST could exhibit a more pronounced pro-apoptotic effect. These results help to envisage a new therapeutic approach in colon cancer by targeting calpain and GRP.Electronic supplementary materialThe online version of this article (doi:10.1186/1472-6882-14-401) contains supplementary material, which is available to authorized users.

Highlights

  • Glucose-regulated proteins (GRP) are induced in the cancer microenvironment to promote tumor survival, metastasis and drug resistance

  • Transduction signals including CCAAT/enhancer-binding protein-homologous protein (CHOP), pro-apoptotic Bcl-2 family members, caspase 12 and c-Jun N-terminal kinase (JNK) all involve in endoplasmic reticulum (ER) stress-induced cell death [3], while unfolded protein response (UPR) leads to adaptation for survival [4]

  • AST induced ER stress-mediated apoptosis In order to explore the involvement of ER stress and UPR activation in AST-induced apoptosis, the drug effects on GRP78 and GRP94, CHOP as well as splicing of XBP-1 were examined

Read more

Summary

Introduction

Glucose-regulated proteins (GRP) are induced in the cancer microenvironment to promote tumor survival, metastasis and drug resistance. The present study aimed to investigate the involvement of GRP in endoplasmic reticulum (ER) stress-mediated apoptosis during colon cancer development, with focus on the correlation between AST-evoked regulation of GRP and calpain activation. Transduction signals including CCAAT/enhancer-binding protein-homologous protein (CHOP), pro-apoptotic Bcl-2 family members, caspase 12 and c-Jun N-terminal kinase (JNK) all involve in ER stress-induced cell death [3], while UPR leads to adaptation for survival [4]. Several natural compounds including genistein and green tea constituents have been proven to strengthen the anticancer ability through GRP78 inhibition [11] These observations have provided evidence that inhibitors of GRP78 can be used in combination with standard chemotherapeutic agents to enhance drug efficacy against cancer development

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.