Abstract
In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. Stress caused by multiple physical and psychological stressors during transportation is particularly harmful to the liver. Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Given that transport stress could disturb hepatic glucolipid metabolism and the role of APS in metabolic regulation, we speculated that APS could antagonize transport stress-induced disorder of hepatic glucolipid metabolism. Firstly, newly hatched chicks were transported for 0, 2, 4, and 8 h, respectively. Subsequently, to further investigate the effects of APS on transport stress-induced hepatic glucolipid metabolism disturbance, chicks were pretreated with water or APS and then subjected to transport treatment. Our study suggested that APS could relieve transport stress-induced lipid deposition in liver. Meanwhile, transport stress also induced disturbances in glucose metabolism, reflected by augmented mRNA expression of key molecules in gluconeogenesis and glycogenolysis. Surprisingly, APS could simultaneously alleviate these alterations via peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)/Sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway. Moreover, APS treatment regulated the level of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ), thereby alleviating transport stress-induced alterations of VLDL synthesis, cholesterol metabolism, lipid oxidation, synthesis, and transport-related molecules. These findings indicated that APS could prevent the potential against transport stress-induced hepatic glucolipid metabolism disorders via PGC-1α/SIRT1/AMPK/PPARα/PPARγ signaling system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.