Abstract

Astragaloside IV (AS-IV), the major active constituent purified from Astragalus membranaceus, was previously reported to have protective effects against cardiac dysfunction. However, the underlying mechanism remains unknown. In the present study, we investigated the protective effect of AS-IV on lipopolysaccharide (LPS)-induced cardiac dysfunction and explored the potential mechanism by focusing on miRNA-1 (miR-1) at the animal and cellular levels. A series of methods were used, including echocardiography, flow cytometry, ELISA, immunofluorescence, transmission electron microscopy, RT-PCR, and western blotting. The results showed that both AS-IV and the miR-1 inhibitor improved cardiac dysfunction, reduced heart injury, inhibited apoptosis and autophagy, and regulated the expression of calcium- and mitochondrial energy metabolism-related proteins in the heart tissue of rats treated with LPS. Importantly, AS-IV downregulated the expression of miR-1 mRNA in heart tissue. All effects of AS-IV were at least partly abolished by miR-1 mimics. In the in vitro study, both AS-IV and the miR-1 inhibitor inhibited apoptosis and autophagy and regulated the expression of calcium- and mitochondrial energy metabolism-related proteins in heart cells treated with LPS. Similarly, AS-IV downregulated the expression of miR-1 mRNA in heart cells. All effects of AS-IV on cells were at least partly abolished by miR-1 mimics. Furthermore, miR-1 mimics exhibited effects similar to LPS both in animal and cellular studies. Taken together, these results suggest that AS-IV protects against LPS-induced cardiac dysfunction by inhibiting calcium-mediated apoptosis and autophagy by targeting miR-1, highlighting a new mechanism for the therapeutic effect of AS-IV on cardiac dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.