Abstract

Astragaloside IV (AS-IV), a natural product derived from Radix Astragali (Astragalus membranaceus), is beneficial for the treatment of Alzheimer’s disease (AD), but the mechanisms underlying this benefit are not completely understood. Peroxisome proliferator-activated receptor gamma (PPARγ) and brain-derived neurotrophic factor (BDNF) are potential therapeutic targets for AD. In this study, we found that amyloid β protein fragment 1–42 oligomers (AβO) suppressed BDNF and PPARγ expression, and inhibited tyrosine receptor kinase B (TrkB) phosphorylation in cultured hippocampal neurons; these changes were ameliorated by treatment with AS-IV. Inhibition of PPARγ by genetic and pharmacological methods also blocked the effect of AS-IV on BDNF expression in AβO-treated cells. Importantly, exogenous BDNF protected against neurotoxicity and apoptosis induced by AβO, whereas inhibition of PPARγ reversed protective effects of AS-IV against these outcomes. In vivo data further revealed that AS-IV improved AβO-induced memory impairment and reduced apoptosis of hippocampal neurons. Moreover, AS-IV suppressed the AβO-induced reduction in BDNF by promoting PPARγ activation in the hippocampus. Taken together, these results indicate that AS-IV prevents AβO-induced memory impairment and hippocampal neuronal apoptosis, probably by promoting the PPARγ/BDNF signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call