Abstract

To investigate the underlying mechanism of Astragaloside IV (AS-IV) in ameliorating diabetic nephropathy (DN) by regulating intestinal microbiota ecology and intestinal mucosal barrier. Genetically db/db mice are used to establish DN mouse model to monitor the therapeutic effects of AS-IV and fecal microbiota transplantation (FMT) against DN. Supplementation with AS-IV dramatically attenuates several clinical indicators of DN in db/db mice. In addition, AS-IV markedly improves intestinal barrier function, modifies intestinal permeability, and reduces inflammation. Moreover, AS-IV treatment remarkably improves intestinal dysbiosis in db/db mice, characterized by an elevated abundance of Akkermansia, Ligilactobacillus, and Lactobacillus, indicating the fundamental role of the microbiome in DN progression. Furthermore, FMT derived from AS-IV-treated db/db mice is potentially efficient in antagonizing renal dysfunction, rebalancing gut microbiota, and improving intestinal permeability in recipient db/db mice. AS-IV-enriched Akkermansia muciniphila dramatically alleviates DN and intestinal mucosal barrier dysfunction in db/db mice. Intriguingly, AS-IV intervention dramatically diminishes ferroptosis in the kidney and colon tissues. CONCLUSION: Intestinal microbiome alterations and ferroptosis modulation by AS-IV may play instrumental roles in this mechanism, providing compelling evidence for the role of the gut-renal axis in DN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call