Abstract

Cell senescence is intensively related to aging and neurodegenerative diseases. This study aimed to explore the effect and targets of Astragaloside IV against amyloid-beta-induced astrocyte senescence. Oligomerized amyloid-beta was prepared to culture with human astrocytes. The effects of Astragaloside IV were assessed based on SA-β-gal staining analysis, senescence markers (p53, p16INK4, and p21WAF1), neurotrophic growth factor levels (qRT-PCR), and cell proliferation (CCK-8 kit). The targets for Astragaloside IV were predicted, and hsp90aa1 protein was verified using molecular docking. After hsp90aa1 overexpression, the effects of Astragaloside IV on amyloid-beta-induced astrocytes were assessed. Treatment of human amyloid-beta-induced astrocytes with Astragaloside IV can decrease the percentage of SA-β-gal positive cells, downregulate the p53, p16INK4, and p21WAF1 levels, and increase the levels of neurotrophic growth factors (IGF-1 and NGF mRNA) and cell proliferation. Based on target prediction, hsp90aa1 was found to be a potential target of Astragaloside IV. Moreover, cellular experiments demonstrated that exogenously enhanced expression of hsp90aa1 overexpression suppressed the protective effect of Astragaloside IV on amyloid-beta-induced human astrocytes. The results presented here demonstrate that Astragaloside IV could confront amyloid-beta-induced astrocyte senescence via hsp90aa1, possibly opening new therapeutic avenues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.