Abstract

BackgroundMicroRNA-155(miR-155) is closely associated with diabetic peripheral neuropathy (DPN). Astragaloside IV (AST) is a significant extract of Astragalus membranaceus, which has been found to be effective in the treatment of DPN. However, whether astragaloside IV alleviate DPN via regulating miR-155-mediated autophagy remains unclear. PurposeThis study was designed to evaluate the effects of AST on DPN myelin Schwann cells injury and explore the mechanism of AST in treating DPN for the first time. MethodsGK rats fed with high-fat diet and RSC96 cells cultured in high glucose were used to establish DPN Schwann cells injury in vivo and in vitro model. The effects of AST on DPN were explored through blood glucose detection, nerve function detection, pathological detection and the expression of Neuritin detected by immunohistochemical. To study the effect of AST on the DPN Schwann cells autophagy and the upstream PI3K/Akt/mTOR pathway, the expressions of beclin-1 and LC3 were detected by western blot (WB) in sciatic nerves and by immunofluorescence (IFC) in RSC96 cells. The real-time polymerase chain reaction (RT-PCR) was applied to detect the expressions of miR-155, ATG5, ATG12 both in vivo and in vitro. The binding effect of miR-155 and target gene PI3KCA was verified by luciferase reporter gene assay. The expressions of PI3K, p-Akt/Akt, p-mTOR/mTOR were detected by WB and the expressions of PI3KCA were detected by RT-PCR in vitro. The apoptosis was detected by flow cytometry. Meanwhile, the influence of miR-155 overexpression and knocked down on the above indicators was also detected in RSC96 cells. At last, further mechanism experiments were conducted to verify the mechanism of AST regulating the autophagy and apoptosis of RSC96 cells. ResultsAST reduced blood glucose levels, alleviated peripheral nerve myelin sheath injury, and improved neurological function in DPN rats. In addition, AST enhanced the autophagy activity and alleviated the apoptosis in RSC96 cell. Mechanism study shown that AST promote autophagy via regulating miR-155-mediated PI3K/Akt/mTOR signaling pathways. AST reduced RSC96 cells apoptosis by promoting autophagy. ConclusionAST alleviate the myelin sheath injury of DPN caused by the apoptosis of Schwann cells via enhancing autophagy, which was attributed to inhibiting the activation of the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call