Abstract

Cadmium (Cd) can damage tissues by inducing oxidative stress, lymphocyte infiltration, and inflammation in these sites. Meanwhile, astilbin (Ast) is an antioxidant agent. At present, only a few mechanisms of Cd-induced adipose tissue damage have been described. Herein, we assessed the potential protective effects and the molecular mechanism underlying the antioxidant properly of Ast after Cd intake in chicken adipose tissue. In this study, a total of 160 7-day-old roosters were randomly divided into four groups. Roosters were fed with a basic diet (C group), Ast 40mg/kg (Ast group), CdCl2 150mg/kg + Ast 40mg/kg (Cd/Ast group), and CdCl2 150mg/kg (Cd group) for 60days. We found that Cd intake changed the morphology and structure of adipose tissues and decreased the expression of several antioxidants, including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), but increased those of oxidative stress markers including malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), NO, and H2O2. Cd further activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the expression of the inflammation-related mediators, interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), cyclooxygenase-2 (COX-2), iNOS, prostaglandin E synthase (PTGES), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). Cd-induced oxidative stress upregulated the expression of three heat shock proteins (HSPs), including HSP27, HSP70, and HSP90. Summarily, Cd causes oxidative stress-mediated tissue damage by activating the NF-κB pathway, promoting inflammation and upregulating the expression of HSPs. However, Ast supplementation modulates oxidative stress in adipose tissue by inhibiting inflammation mediated by the NF-κB pathway and regulating the expression of HSPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.