Abstract

Asthma is a common multifactorial complex disease caused by an interaction of genetic and environmental factors. There are no robust biomarkers or molecular diagnostics for asthma or its detailed phenotypic stratification in the clinic. Regulatory and epigenomic factors are priority candidates for asthma biomarker discovery and translational research because this common disease emerges in association with host/environment interactions. In this context, epigenomic molecular events such as microRNA (miRNA) silencing affect asthma susceptibility and severity. We report here an analysis of the miRNAs in the literature, their targets associated with asthma, and present the findings organized as an miRNA-target network, an miRNA regulome of asthma. The miRNA-target interactions in asthma were extracted from the PubMed and the Web of Science databases, while the miRNA-target network was visualized with the Cytoscape tool. Genomic locations of miRNA and target genes were displayed using the Ensembl Whole Genome tool. We cataloged miRNAs associated with asthma and their experimentally validated targets, retrieving 48 miRNAs associated with asthma, and 54 experimentally validated miRNA targets. Four central molecules involved in 34.5% of all interactions were identified in the network. The miRNA-target pairs were constructed as an asthma-associated miRNA-target regulatory network. The network revealed subnetworks pointing toward potential asthma biomarker candidates. The asthma miRNA regulome reported here offers a strong foundation for future translational research and systems medicine applications for asthma diagnostic and therapeutic innovation. Developed protocol for constructing miRNA regulome could now be used for biomarker development in multifactorial diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.