Abstract
AbstractThe Drake Passage is considered a gateway for oceanic and asthenospheric flows since its opening, entailing widespread consequences for climate and plate tectonics, respectively. Both the surface and the 50 km upward continued Bouguer anomaly maps of the Scotia Sea and surrounding areas, based on Gravity Recovery and Climate Experiment gravity satellite data, improve our knowledge of deep lithospheric structures and the asthenosphere. We show that the West Scotia Sea is likely to be underlain by an anomalously low‐density upper mantle. Gravity data are compatible with variable lithospheric thicknesses related to asthenospheric currents. The new data suggest that the development of the Shackleton Fracture Zone since the middle Miocene was probably a main factor that determined the evolution of the eastward Pacific mantle flows and the extinction of the West Scotia Sea oceanic spreading around 6 Ma ago. Deep lithospheric roots are likely to divert asthenospheric currents around them, flowing eastward through Drake Passage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.