Abstract

Summary. Present-day plate motions imply that about 240 km3 of oceanic lithosphere is created by sea-floor spreading and destroyed by subduction per year. A greater volume of asthenosphere will be dragged along by plate motions. Given the fluxes generated at plate boundaries, the horizontal direction and net rate of counterflow required to maintain mass balance is determined globally by a simple analytical model. Time-dependent calculations indicate that the motions are approximately valid in the hotspot reference frame over the past 5 Myr. Under most plates, the model return flow is opposite to the lithospheric motion in the hotspot frame. The counterflow dominates the resisting stresses to plate motion, so driving force models based on plate drag alone are not valid where the directions of plate motion and counterflow differ. The most marked departure of the two directions is under the North American plate. The model counterflow directions indicate that the sources of mantle hotspots are not located within the asthenosphere. Model flux balances demonstrate exchange of material between asthenospheric reservoirs located beneath different plates. Suggestions of southward asthenospheric motion under the North Atlantic, based on physical features around Iceland and strontium isotope geochemistry, are consistent with the direction of flow predicted by the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call