Abstract

ABSTRACT Most subdwarf B stars are located in post-common envelope binaries. Many are in short-period systems subject to tidal influence, and many show pulsations useful for asteroseismic inference. In combination, one must quantify when and how tidal distortion affects the normal modes. We present a method for computing tidal distortion and associated frequency shifts. Validation is by application to polytropes and comparison with previous work. For typical sdB stars, a tidal distortion to the radius of between $0.2\,$ and $2\,$ per cent is generated for orbital periods of 0.1 d. Application to numerical helium core-burning stars identifies the period and mass-ratio domain where tidal frequency shifts become significant and quantifies those shifts in terms of binary properties and pulsation modes. Tidal shifts disrupt the symmetric form of rotationally split multiplets by introducing an asymmetric offset to modes. Tides do not affect the total spread of a rotationally split mode unless the stars are rotating sufficiently slowly that the rotational splitting is smaller than the tidal splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call