Abstract
Abstract HD 176465 is a binary system for which both components are solar-like pulsators and oscillation frequencies were observed by the Kepler mission. In this paper, we have modeled the asteroseismic and spectroscopic data of the stars, and have determined their convection-zone helium abundances using the signatures left by the He ii ionization zone on the mode frequencies. As expected, we find that the components of the binary are of the same age within uncertainties (3.087 ± 0.580 Gyr and 3.569 ± 0.912 Gyr); they also have the same initial helium abundance (Y init = 0.253 ± 0.006 and 0.254 ± 0.008). Their current metallicity ([Fe/H] = −0.275 ± 0.04 and −0.285 ± 0.04) is also the same within errors. Fits to the signature of the He ii acoustic glitch yield current helium abundances of Y A = 0.224 ± 0.006 and Y B = 0.233 ± 0.008 for the two components. Analyzing the complete ensemble of models generated for this investigation, we find that both the amplitude and acoustic depth of the glitch signature arising from the second helium ionization zone and the base of the convection zone (CZ) are functions of mass. We show that the acoustic depths of these glitches are positively correlated with each other. The analysis can help us to detect the internal structure and constrain the chemical compositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.