Abstract
The Gaia mission has provided astrometric observations of unprecedented accuracy for more than 156,000 asteroids. The reported astrometric uncertainties are of the order of milliarcseconds, about 2 orders of magnitude smaller than that of traditional ground-based observations. The accuracy of Gaia data requires a high-fidelity orbit determination process, especially in the observation modeling. We present a statistical analysis of Gaia Focused Product Release to test the accuracy of the reported positions and associated uncertainties. We find that center-of-light offsets due to phase variations need to be modeled to properly fit the observational data. Prediction tests show that the uncertainty in the fitted orbits can be optimistic unless the observational uncertainty is inflated to account for errors in finding the center-of-mass of the body. Moreover, errors in the masses of small-body perturbers can cause differences in the orbital solution that exceed formal uncertainties of the best constrained orbits. As an example, we provide an update of the impact hazard analysis of 1950 DA, one of the asteroids observed by Gaia, and find that the impact probability in the year 2880 increases to 3.8 × 10−4.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.