Abstract

The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids ( ∼ 350,000 brighter than V < 20 ) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.