Abstract
Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.