Abstract
A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. However, finding clinically relevant SL interactions remains challenging. Leveraging unified gene expression data of both disease-free and cancerous samples, we design a new technique based on statistical hypothesis testing, called ASTER, to identify SL pairs. We empirically find that the patterns of mutually exclusivity ASTER finds using genomic and transcriptomic data provides a strong signal of synthetic lethality. For large-scale multiple hypothesis testing, we develop an extension called ASTER++ that can utilize additional input gene features within the hypothesis testing framework. Our computational and functional experiments demonstrate the efficacy of ASTER in identifying SL pairs with potential therapeutic benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.