Abstract
Polycomb Repressive Complex 2 (PRC2) modulates the chromatin structure and transcriptional repression by trimethylation lysine 27 of histone H3 (H3K27me3), a process that necessitates the protein-protein interaction (PPI) between the catalytic subunit EZH2 and EED. Deregulated PRC2 is intimately involved in tumorigenesis and progression, making it an invaluable target for epigenetic cancer therapy. However, until now, there have been no reported small molecule compounds targeting the EZH2-EED interactions. In the present study, we identified astemizole, an FDA-approved drug, as a small molecule inhibitor of the EZH2-EED interaction of PRC2. The disruption of the EZH2-EED interaction by astemizole destabilizes the PRC2 complex and inhibits its methyltransferase activity in cancer cells. Multiple lines of evidence have demonstrated that astemizole arrests the proliferation of PRC2-driven lymphomas primarily by disabling the PRC2 complex. Our findings demonstrate the chemical tractability of the difficult PPI target by a small molecule compound, highlighting the therapeutic promise for PRC2-driven human cancers via targeted destruction of the EZH2-EED complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.