Abstract
The possibility of an accident or component failure during mid-loop operation has been identified in probabilistic safety studies as a major contributor to core melt frequency and source term risk. The fission products release and transport to the containment has been analyzed during mid-loop operation of a reference PWR 1000 MWe reactor using the severe accident integral code ASTEC V2.0. The analyses have been performed considering the loss of residual heat removal (RHR) system at various times after reactor shutdown for the reactor vessel configuration with the removed upper head (open reactor). In this configuration, the possible air ingress can have an impact on safety such as accelerated oxidation and increased volatility of certain FPs (particularly iodine and ruthenium). Sensitivity calculations have been performed in terms of air ingress simulation with a different intensity. Besides equilibrium chemistry model, most of the calculations have also used a limited kinetics model. The study has shown that without air ingress the only predicted gaseous form of iodine is HI (≤7.4% of the total mass of iodine released from core) and no gaseous RuO 4 is created. Sensitivity calculations have illustrated that the gross fraction of gaseous iodine (I 2 + HOI + HI) has an increased trend with growth of air ingress intensity and with the duration of sequence evolution. In most oxidative atmosphere the gross iodine gaseous fraction could increase by a factor form of two to several times as compared to the corresponding case without air ingress (particularly due to I 2 persistence). Creation of gaseous RuO 4 is sensitive to carrier gas temperature; therefore a considerable fraction (≤3%) is predicted only in the sensitivity cases with the shortest time of loss of RHR after reactor scram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.