Abstract
The survival of free fat grafts is dependent primarily on adipose-derived stem cells (ADSCs); however, ADSCs are susceptible to oxidative stress in the recipient area. Astaxanthin (Axt) is a natural xanthophyll carotenoid with potent antioxidant properties and numerous clinical applications. To date, the therapeutic potential of Axt in fat grafting has not been explored. The purpose of this study is to investigate the effects of Axt on oxidatively stressed ADSCs. An oxidative model of ADSCs was developed to simulate the host's microenvironment. Oxidative insult decreased the protein levels of Cyclin D1, type I collagen alpha 1 (COL1A1), and type II collagen alpha 1 (COL2A1), while increasing the expression of cleaved Caspase 3 and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ADSCs. Axt pre-treatment significantly reduced oxidative stress, increased the synthesis of an adipose extracellular matrix, alleviated inflammation, and restored the impaired adipogenic potential in the present model. Furthermore, Axt immensely activated the NF-E2-related factor 2 (Nrf2) pathway, and ML385, an inhibitor of Nrf2, could negate Axt's protective effects. Additionally, Axt alleviated apoptosis by inhibiting bcl-2-associated X protein (BAX)/Caspase 3 signaling and improving the mitochondrial membrane potential (MMP), which could also be abolished by ML385. Our results suggest that Axt may exert its cytoprotective effect on ADSCs through the Nrf2 signaling pathway and could be therapeutic in fat grafting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.