Abstract

The survival of free fat grafts is dependent primarily on adipose-derived stem cells (ADSCs); however, ADSCs are susceptible to oxidative stress in the recipient area. Astaxanthin (Axt) is a natural xanthophyll carotenoid with potent antioxidant properties and numerous clinical applications. To date, the therapeutic potential of Axt in fat grafting has not been explored. The purpose of this study is to investigate the effects of Axt on oxidatively stressed ADSCs. An oxidative model of ADSCs was developed to simulate the host's microenvironment. Oxidative insult decreased the protein levels of Cyclin D1, type I collagen alpha 1 (COL1A1), and type II collagen alpha 1 (COL2A1), while increasing the expression of cleaved Caspase 3 and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ADSCs. Axt pre-treatment significantly reduced oxidative stress, increased the synthesis of an adipose extracellular matrix, alleviated inflammation, and restored the impaired adipogenic potential in the present model. Furthermore, Axt immensely activated the NF-E2-related factor 2 (Nrf2) pathway, and ML385, an inhibitor of Nrf2, could negate Axt's protective effects. Additionally, Axt alleviated apoptosis by inhibiting bcl-2-associated X protein (BAX)/Caspase 3 signaling and improving the mitochondrial membrane potential (MMP), which could also be abolished by ML385. Our results suggest that Axt may exert its cytoprotective effect on ADSCs through the Nrf2 signaling pathway and could be therapeutic in fat grafting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call