Abstract
Soil cadmium (Cd) contamination poses a significant threat to global food security and the environment. Astaxanthin (AX), a potent biological antioxidant belonging to the carotenoid group, has been demonstrated to confer tolerance against diverse abiotic stresses in plants. This study investigated the potential of AX in mitigating Cd-induced damage in wheat seedlings. Morpho-physiological, ultrastructural, and biochemical analyses were conducted to evaluate the impact of AX on Cd-exposed wheat seedlings. Illumina-based gene expression profiling was employed to uncover the molecular mechanisms underlying the protective effects of AX. The addition of 100 μM AX alleviated Cd toxicity by enhancing various parameters: growth, photosynthesis, carotenoid content, and total antioxidant capacity (T-AOC), while reducing Cd accumulation, malondialdehyde (MDA), and hydrogen peroxide (H2O2) levels. RNA sequencing analysis revealed differentially expressed genes associated with Cd uptake and carotenoid metabolism, such as zinc/iron permease (ZIP), heavy metal-associated protein (HMA), 3-beta hydroxysteroid dehydrogenase/isomerase (3-beta-HSD), and thiolase. These findings suggest that AX enhances Cd tolerance in wheat seedlings by promoting the expression of detoxification and photosynthesis-related genes. This research offers valuable insights into the potential use of AX to address Cd contamination in agricultural systems, highlighting the significance of antioxidant supplementation in plant stress management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.