Abstract
Astaxanthin (Ax), a xanthophyll carotenoid, is reported to induce cytochrome P450 (CYP) 1A-dependent activity. CYP1A is one of the most important enzymes participating in phase I metabolism for chemicals, and it can activate various mutagens. To investigate the effect of Ax on the metabolic activation of a typical promutagen, benzo[a]pyrene by CYP1A, we orally administrated Ax-containing oil (100mg Ax/kg body weight/day for 3days) to male Wistar rats. In the treated rat liver, expression of CYP1A1 mRNA, protein, and its activity were significantly increased (5.5-, 8.5-, and 2.5-fold, respectively). In contrast, the activities of phase II enzymes (glutathione S-transferase and glucuronosyl-transferase) were not modulated by Ax-containing oil. As a consequence, the mutagenicity of benzo[a]pyrene was more enhanced in Ax-treated rats, compared with controls in the Ames assay. On the other hand, NADPH P450 reductase activity was decreased in liver microsomes from the treated group. This result suggests the possibility that Ax inhibits the electron supply necessary for CYP catalytic activities and decreases CYP1A activity indirectly. In conclusion, Ax-containing oil intake can alter CYP1A-dependent activities through two different mechanisms: (1) induction of CYP1A1 mRNA, protein expression, and activity; and (2) inhibition of the electron supply for the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.