Abstract

Oxidative stress is the major cause of renal fibrosis in the progression of DN. Connexin43 (Cx43) exerts an anti-fibrosis effect on diabetic kidneys. The current study aimed to investigate whether astaxanthin (AST) could ameliorate the pathological progression of DN by upregulating Cx43 and activating the Nrf2/ARE signaling, which is a pivotal anti-oxidative stress system, to strengthen the cellular anti-oxidative capacity and diminish fibronectin (FN) accumulation in HG-induced glomerular mesangial cells (GMCs). Our hypothesis was verified in GMCs and the kidneys from db/db mice by western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, dual luciferase reporter assay and reactive oxygen related detection kits. Results showed that AST simultaneously upregulated the Cx43 protein level and promoted the Nrf2/ARE signaling activity in the kidney of db/db mice and HG-treated GMCs. However, Cx43 depletion abrogated the Nrf2/ARE signaling activation induced by AST. AST reduced the interaction between c-Src and Nrf2 in the nuclei of GMCs cultured with HG, thereby enhancing the Nrf2 accumulation in the nuclei of GMCs. Our data suggested that AST promoted the Nrf2/ARE signaling by upregulating the Cx43 protein level to prevent renal fibrosis triggered by HG in GMCs and db/db mice. c-Src acted as a mediator in these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.