Abstract
Traffic congestion prediction has become an indispensable component of an intelligent transport system. However, one limitation of the existing methods is that they treat the effects of spatio-temporal correlations on traffic prediction as invariable during modeling spatio-temporal features, which results in inadequate modeling. In this paper, we propose an attention-based spatio-temporal 3D residual neural network, named AST3DRNet, to directly forecast the congestion levels of road networks in a city. AST3DRNet combines a 3D residual network and a self-attention mechanism together to efficiently model the spatial and temporal information of traffic congestion data. Specifically, by stacking 3D residual units and 3D convolution, we proposed a 3D convolution module that can simultaneously capture various spatio-temporal correlations. Furthermore, a novel spatio-temporal attention module is proposed to explicitly model the different contributions of spatio-temporal correlations in both spatial and temporal dimensions through the self-attention mechanism. Extensive experiments are conducted on a real-world traffic congestion dataset in Kunming, and the results demonstrate that AST3DRNet outperforms the baselines in short-term (5/10/15 min) traffic congestion predictions with an average accuracy improvement of 59.05%, 64.69%, and 48.22%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.