Abstract

Chapter 1. Assurance Technologies, Profits, and Managing Safety-Related Risks. 1.1 Introduction. 1.2 Cheaper, Better, and Faster Products. 1.3 What is System Assurance. 1.4 Key Management Responsibilities. 1.5 Is System Assurance a Process?. 1.6 System Assurance Programs. References. Further Reading. Chapter 2. Introduction to Statistical Concepts. 2.1 Probabilistic Designs. Construction of a histogram and the empirical distribution. 2.2 Computing reliability. Failure rate and hazard function. 2.3 Normal Distribution. 2.4 Log Normal Distribution. 2.5 Exponential Distribution. 2.6 Weibull Distribution. Plotting the data. 2.8 Discrete Distributions. 2.9 Topics for Student Projects and Theses. References. Further Reading. Chapter 3. Reliability Engineering and Safety-related Applications. 3.1 Reliability Principles. 3.2 Reliability in the Design Phase. 3.3 Reliability in the Manufacturing Phase. 3.4 Reliability in the Test Phase. 3.5 Reliability in the Use Phase. 3.6 Reliability and Safety Commonalities. 3.7 Topics foe Student Projects and Theses. References. Further Reading. Chapter 4. Maintainability Engineering and Safety-related Applications. 4.1 Maintainability Engineering Principles. 4.2 Maintainability during the Design Phase. 4.3 Maintainability in the Manufacturing Stage. 4.4 Maintainability in the Test Stage. 4.5 Maintainability in the Use Stage. 4.6 Maintainability and System Safety. 4.7 Topics for Student Projects and Theses. References. Further Reading. Chapter 5. System Safety Engineering. 5.1 System Safety Principles. 5.2 System Safety in Design. 5.3 System Safety in manufacturing. 5.4 System Safety in the Test Stage. 5.5 System Safety in the Use Stage. 5.6 Analyzing System Hazards and Risks. 5.7 Hazard Identification. 5.8 Topics for Student Projects and Theses. References. Further Reading. Chapter 6. Quality Assurance Engineering and Preventing Latent Safety Defects. 6.1 Quality Assurance Principles. 6.2 Quality Assurance in the Design Phase. 6.3.Evaluation of pilot run. 6.4 Quality Assurance in the Test Phase. 6.5 Quality Assurance in the Use Phase. 6.6 Topics for Student Projects and Theses. References. Further Reading. Chapter 7. Logistics Support Engineering and System Safety Considerations. 7.1 Logistics Support Principles. 7.2 Logistics Engineering during the Design Phase. documentation. 7.3 Logistics Engineering during the Manufacturing Phase. 7.4 Logistics Engineering during the Test Phase. 7.5 Logistics Engineering in the Use Phase. 7.6 Logistics Support Engineering and System Safety. 7.7 Topics for Student Projects and Theses. References. Further Reading. Chapter 8. Human Factors Engineering and System Safety Considerations. 8.1 Human Engineering Principles. 8.2 Human Factors in the Design Phase. 8.3 Human Factors in the Manufacturing Phase. 8.4 Human Factors in the Test Phase. 8.5 Human Factors in the Use Phase. 8.6 Additional considerations involving Human Factors and System Safety. 8.7 Real Time and Latent Errors. 8.8 Analyses in Support of Human Factors and System Safety. 8.9 Topics for Student Projects and Theses. References. Further Reading. Chapter 9. Software Performance Assurance. 9.1 Software Performance Principles. 9.2 Software Performance in the Design Phase. 9.3 Software Requirements during Coding and Integration. 9.4 Software Testing. 9.5 Software Performance in the Use Stage. 9.6 Topics for Student Projects and Theses. References. Chapter 10. System Effectiveness. 10.1 Introduction. 10.2 System Effectiveness Principles. 10.3 Implementing the Programs. 10.4 Managing by Life-Cycle Costs. 10.5 System Effectiveness Model. 10.6 Author?s Recommendation. 10.7 System Risk and Effects on System Effectiveness. 10.8 Topics for Student Projects and Theses. References. Further Reading. Additional Reading. Chapter 11. Managing Safety-Related Risks. 11.1 Establish the Appropriate Safety Program to Manage Risk. 11.2 Programs to Address Product, Process, and System Safety. 11.3 Resource Allocation and Coast Analysis in Safety Management. 11.4 Topics for Student Projects and Theses. 11.5 System Safety-related Literature. Chapter 12. Statistical Concepts, Loss Analysis, and Safety-Related Applications. 12.1 Use of Distributions and Statistical Applications Associated with Safety. 12.2 Statistical Analysis Techniques used within Safety Analysis. 12.3 Using Statistical Control in Decision-Making for Safety. 12.4 Behavior Sampling. 12.5 Calculating Hazardous Exposures to the Human System. 12.6 Topics for Student Projects and Theses. Further Reading. Chapter 13. Models, Concepts and Examples: Applying Scenario-Driven Hazard Analysis. 13.1 Adverse Sequences. 13.2 Designing Formats for Conducting Analysis and Reporting Results. 13.3 Documentation Reports. 13.4 Conceptual Models. 13.5 Lifecycle of a System Accident. 13.6 Operating and Support Hazard Analysis Example. 13.7 Topics for Student Projects and Theses. Additional Reading and Reference Sources. Chapter 14. Automation, Computer, and Software Complexities. 14.1 Complex Systems Analysis. 14.2 System Context. 14.3 Understanding the Adverse Sequence. 14.4 Additional Software Safety Analysis Techniques. 14.5 True Redundancy. 14.6 Complexities and Hazards within Computer Hardware. 14.7 Initiators, contributors, the Errors Associated with Software. 14.8 Other Specialized Techniques, Analysis Methods, and Tools for Evaluating Software and Computer Systems. 14.9 Existing Legacy Systems, Reusable Software, Commercial Off-the-Shelf Software (COTS) and Non-Development Items (NDI). 14.10 Topics for Student Projects and Theses. Additional References.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.