Abstract

We revisit the semantic relations between Assumption-Based Argumentation (ABA) and Logic Programming (LP) based on the recent development of model-based semantics for ABA frameworks. This effort is motivated by the close resemblance between the computation of complete ABA models and the computation of Przymuzinski’s partial stable models for logic programs. As we show these concepts coincide ipsis litteris, multiple results about the different ABA semantics (preferred, grounded, stable, semi-stable, ideal, eager) and corresponding LP semantics (regular, well-founded, stable, L-stable, ideal, eager) follow. Our approach also introduces a new translation from ABA frameworks to logic programs that has better properties than the one available in the literatue, including lower computational complexity. The combination of our new translation and model-based ABA semantics is the key to all of our results. It is also known that the more traditional assumption extension and labelling-based semantics for ABA can be obtained from ABA models using an operation called tuple projection, so it follows from our results that ABA is LP with projection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.