Abstract
An assumed probability density function (PDF) approach is used for the simulation of turbulent high speed combustion with finite-rate chemistry. The PDFs employed are a clipped Gaussian distribution for temperature and a joint multi-variate β-distribution for an arbitrary number of species mass fractions. The definition of both PDFs is based on higher order moments obtained from additional transport equations. In the present work, a transport equation for the variance of temperature and the sum of species mass fraction variances is solved. The numerical approach is compared with experimental data of a Mach 2 supersonic hydrogen-air diffusion flame. The focus of this paper is on the investigation of the marginal PDFs of temperature and species molar fractions at representative spatial positions. Moreover, two-dimensional marginal PDFs of pairs of species mass fractions are compared with experimental results. It is shown that the assumed PDF approach achieves a good agreement with experimental data concerning first and second moments and that even the shape of the PDF is met relatively well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Computational Fluid Dynamics, An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.