Abstract

Information associated with the inertia tensor is the preeminent explanation for haptic perception of object properties, notably wielded rod length. Critics counter that tensorial-based information requires non-tensorial supplementation (mass, torque). However, those critiques omit important constraints. With relevant constraints included, the inertia tensor alone completely specifies rod length. I list constraints inherent (but tacit) in haptic rod length perception, and show that object properties associated with the inertia tensor are invariant, even with constraints removed, by involving (a) longitudinal moment equivalents for rod mass and (b) derivatives of moments with respect to varying rotation axes. Analytic outcomes show tensorial-based information is a robust basis for wielded rod length perception, and suggest open questions for empirical exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.