Abstract

Size assortative mating has received increasing attention due to its potential to drive divergence and perhaps speciation. In this study, we examined assortative pairing at 17 nests of Darwin’s Small Tree Finches, Camarhynchus parvulus. We found positive assortative pairing for two traits: bill length and tarsus length, and these traits showed a significant positive correlation to each other. Assortative pairing could be driven by female choice for similar phenotypes because male–male competition has rarely been observed in the Small Tree Finch, nor have males been observed to reject potential mates. Given the high heritability of bill morphology in Darwin’s finches, it is possible that female preference for male bill length, a trait that is known to be important for foraging, will influence offspring bill size to maximise efficient exploitation of resources. The finding of size assortative pairing on the basis of tarsus length requires more research, but suggests different trait utilities for different foraging niches. Interestingly, the highland distribution of tarsus length across the population showed a unimodal distribution, but a bimodal distribution after pairing. While not significant, we found comparatively large differences across study plots in tarsus length, which suggests the possibility of phenotype–habitat matching at a small spatial scale in this species. Our findings are significant in the context of the adaptive radiation of Darwin’s finches as they are consistent with the allopatric model of speciation but also show potential for adaptive divergence in sympatry in Darwin’s tree finches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call