Abstract

Underdominant mutations have fixed between divergent species, yet classical models suggest that rare underdominant alleles are purged quickly except in small or subdivided populations. We predict that underdominant alleles that also influence mate choice, such as those affecting coloration patterns visible to mates and predators alike, can fix more readily. We analyze a mechanistic model of positive assortative mating in which individuals have n chances to sample compatible mates. This one-parameter model naturally spans random mating (n=1) and complete assortment (n→∞), yet it produces sexual selection whose strength depends non-monotonically on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, even though sexual selection and underdominance independently each suppress rare alleles. This mechanism allows underdominant alleles to fix in large populations and illustrates how life history can affect evolutionary change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.