Abstract
Density functional calculations were performed to determine equilibrium geometrical structures, transition states and relative energies for M(3) clusters (M = Nb, Mo, Tc, Ru, Rh, Pd, Ag) reacting with CO, leading to proposed reaction pathways. For the Nb(3), Mo(3), and Tc(3) clusters, the lowest energy structure correlates to dissociated CO, with the C and O atoms bound on opposite sides of the metal triangle. For all other trimers, the lowest energy structures maintain the CO moiety. In the case of Pd(3) and Ag(3) the dissociated geometries lie higher in energy than the sum of the separated reactants. In most cases, several multiplicities were found to be similar in energy and for Mo(3)CO and Pd(3)CO singlet-triplet minimum energy crossing points were identified. In the case of Rh(3)CO, minimum energy crossing points for the doublet, quartet, and sextet reaction pathways were determined and compared. The electron densities of pertinent M(3)CO species were investigated using Natural Bond Order calculations. It was found that the effect of the metal trimer on the energy of the pure p-type pi* antibonding orbital of carbon monoxide directly correlates with the occurrence of CO dissociation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.