Abstract

A series of events generates multiple types of time series data, such as numeric and text data over time, and the variations of the data types capture the events from different angles. This paper aims to integrate the analyses on such numerical and text time-series data influenced by common events with a single model to better understand the events. Specifically, we present a topic model, called an associative topic model (ATM), which finds the soft cluster of time-series text data guided by time-series numerical value. The identified clusters are represented as word distributions per clusters, and these word distributions indicate what the corresponding events were. We applied ATM to financial indexes and president approval rates. First, ATM identifies topics associated with the characteristics of time-series data from the multiple types of data. Second, ATM predicts numerical time-series data with a higher level of accuracy than does the iterative model, which is supported by lower mean squared errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.