Abstract

This report further characterizes associative long-term synaptic modification of the ipsilateral and contralateral synapses formed by the bilateral entorhinal cortical (EC) projection to the dentate gyrus (DG). The experimental model is the anesthetized hooded rat. The quantitative results qualify this system as a model for studying the rules of associative synaptic modification formulated in terms of individual synapses. Bilateral DG microelectrodes recorded both ipsilateral and contralateral EC-DG responses before and after brief, high-frequency EC conditioning stimulation. The weak contralateral pathway received high-frequency conditioning before, during, or after similar conditioning of the strong, converging ipsilateral pathway. Statistical analyses revealed two types of significant, dissociated synaptic modifications, which depend on the relationship of the ipsilateral and contralateral afferents. First, contralateral EC-DG responses potentiated or depressed when the converging ipsilateral responses concurrently either potentiated or remained unchanged. Second, contralateral EC-DG responses potentiated, depressed, or showed no change when the collateral ipsilateral responses concurrently either potentiated or remained unchanged. Correlation and contingency table analyses indicated that changes in the contralateral synaptic responses are not well predicted by changes at either neighboring synapses of the converging ipsilateral pathway or at synapses of the collateral ipsilateral pathway. The contingencies of associated pre- and postsynaptic activation determined by the conditioning paradigm, however, accurately predicted the altered synaptic responses of both ipsilateral and contralateral EC-DG pathways. The results imply that associative synaptic modification in the EC-DG system is specific to individual synapses and requires both appropriate presynaptic and postsynaptic activation. Because this system provides suitable controls for nonspecific effects of conditioning stimulation and because modification of neighboring synapses is dissociable, the EC-DG system can be used to study further those rules of activity-dependent associative modification that are formulated in terms of individual synapses. The discussion briefly considers published rules of synaptic modification, pointing out several rules that are not consistent with the experimental observations and one that agrees with the present results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.