Abstract
Synchronous pre- and postsynaptic neuronal activity results in long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and the neocortex. Induction of this form of potentiation requires calcium influx mediated by NMDA receptors. Experimental evidence is reviewed for induction of long-term depression (LTD) of synaptic transmission in the hippocampus in vitro and neocortical neurons in vivo, when the discharge of the postsynaptic neuron is temporally decorrelated from the presynaptic stimulation. Homosynaptic LTD induced by low frequency tetani in the hippocampus in vitro requires NMDA receptor activation and a moderate calcium influx. The role of postsynaptic calcium as a key parameter in the encoding of temporal contiguity of neural activity and its possible implications in the formation of engrams during specific learning tasks are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.